NATURAL LANGUAGE PROCESSING UNIT-2

Vector Semantics

feedback/corrections: vibha@pesu.pes.edu

VIBHA MASTI

Define Words by their Usage

- · Words defined by environment (distributionalist)
 - synonyms: identical environments

Unknown concept long choi?

- Ong choi is delicious sautéed with garlic.
- Ong choi is superb over rice
- Ong choi leaves with salty sauces

Environments seen before

- ...spinach sautéed with garlic over rice
- Chard stems and leaves are delicious
- Collard greens and other salty leafy greens

ong choi is leafy green Conclusion: ٩

vector Semantics

٠

•	Word:	point in multi-dimensimal space
•	Vector	for representing word: embedding
		to by 's instruction bad
		that now are worse a i you than with a
		very good incredibly good amazing fantastic wonderful terrific nice
		good
		Figure 6.1 A two-dimensional (t-SNE) projection of embeddings for some words and phrases, showing that words with similar meanings are nearby in space. The original 60-
		annonstonal onoceanitys were durined for solution analysis. Simplified for Dice al. (2015).

- Words with similar meaning: closer in
 - space · sentiment analysis works better with unseen wrrds
 - · ICLR Workshop 2016 Li et al.

EMBEDDIN 65

- 1. TF-IDF (Term Frequency-Inverse Document Frequency)
 - · Words represented as function of the counts of nearby words
 - · Sparse vectors
- 2. Word 2 Vec
 - Train classifier to predict whether a word is likely to appear nearby
 - · Dense vectors
- TF-IDF
- t: term / Word
 d: document
- N: size of corpus/ no. of documents
 Corpus: set of documents

https://arxiv.org/pdf/1512.08183.pdf

Q: consider the following 3 documents

D1: text mining is to find useful information from text

D2: useful information from text is mined

03: dark came

Document-word matrix

	text	mining	is	to	find	useful	information	from	text	mined	dark	came
 D1	1	1	1	1	1	1	1	1	1	0	0	0
D2	0	0	1	0	0	1	1	1	1	1	0	0
D3	0	0	0	0	0	0	0	0	0	0	1	1

tf(text, DI) = 1

df(text) = 2

 $idf(text) = log(\frac{3}{df+1}) = log(\frac{3}{3}) = 0$

 \cdot +f-idf (text, DI) = D

· No. of times column word occurs in a ±W word window around row word

Eg: wikipedia corpus

•

is traditionally followed by cherry pie, a traditional dessert often mixed, such as strawberry computer peripherals and personal digital a computer. This includes information available on the internet

	1 1 1		1 1 1		1 1 1	1	1 1 1	
	aardvark	•••	computer	data	result	pie	sugar	
cherry	0	•••	2	8	9	442	25	••••
strawberry	0	•••	0	0	1	60	19	
digital	0	•••	1670	1683	85	5	4	
information	0	•••	3325	3982	378	5	13	

Co-occurrence vectors for four words in the Wikipedia corpus, showing six of the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in red. Note that a real vector would have vastly more dimensions and thus be much sparser.

		141	• •	ung	, spu	50						
•	۹	tern	ativ	e : s	hort,	den	se					
T	ype	s of	VE	CTOR	MO	DELS						
Ĵ.	Sp	arse	VEC	tor	repr	resen	tatio	ms				
	(a)	Mu	rd	C0-0	CCUT	rence	m	atr	ices			
2.	De	.nse	vec	tor	rep	reser	ntał	in	S			
	(6)	۶vr) ar	nd L	sa							
	(C)	Neu CBO	ral w,	net Word	ins; d2ve	oired c , gl	M .oVe	ode	ls —	· ski	p-gra	rv
	(d)	Bro	wn	clus	ters	U						
•	Dis	trib	ntio	nal	hy	pothe	2):2:2:2:	sil	nil	arit	y of	
	di	strib	unior	n N	lates			SIMI	lar	ity	07	

DISTRIBUTIONAL SEMANTIC MODELS (DSM3)

- General purpose semantic models that can be applied to various tasks
- · Co-occurrence matrix
- •
- Eg: 1. Hyperspace Analogue to Language 2. LSA
 - 3. Syntax-based DSM using dependency relation
- Co-Occurrence Matrix
- · Row: word Column: context Cwindow/paragraph/doc)

	d_1	d_2	d_3	d_4	d_5
dog	88	92	11	1	2
lion	57	28	3	0	0
bark	80	62	10	0	1
car	0	1	0	93	97
tire	2	0	2	80	72
drive	0	1	0	90	45
	1	1 I I I	1	1	- I I

Association

· PMI (W, c) = $\log_2\left(\frac{P(W, c)}{P(W)P(c)}\right)$ word with context

Corp	N	- 11	tles	of	9	techn	ical	memu	randa:
(1)	5	ak	bout	H H	CT				
(2)	4	al	pont	9	rapl	n the	my		

Example of text data: Titles of Some Technical Memos

- c1: Human machine interface for ABC computer applications
- c2: A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- c4: System and human system engineering testing of EPS
- c5: Relation of *user* perceived *response time* to error measurement
- m1: The generation of random, binary, ordered *trees*
- m2: The intersection *graph* of paths in *trees*
- m3: Graph minors IV: Widths of trees and well-quasi-ordering
- m4: Graph minors: A survey

	c1	c2	c3	c4	c5	m1	m2	m3	m4	
 human	1	0	0	1	0	0	0	0	0	
 interface	1	0	1	0	0	0	0	0	0	
computer	1	1	0	0	0	0	0	0	0	
user	0	1	1	0	1	0	0	0	0	
 system	0	1	1	2	0	0	0	0	0	
 response	0	1	0	0	1	0	0	0	0	
time	0	1	0	0	1	0	0	0	0	
EPS	0	0	1	1	0	0	0	0	0	
 survey	0	1	0	0	0	0	0	0	1	
 trees	0	0	0	0	0	1	1	1	0	
graph	0	0	0	0	0	0	1	1	1	
minors	0	0	0	0	0	0	0	1	1	

impo	ort nump	y as np							
tern	n_doc_com	ints =	np.arra	у([
	[1,0,0,1	1,0,0,0	,0,0],						
	[1,0,1,0	0,0,0,0	,0,0],						
	[1,1,0,0	0,0,0,0	,0,0],						
	LO,1,1,0),1,0,0	,0,0],						
	[0, 1, 1, 1, 1]	2,0,0,0	,0,0],						
	[0,1,0,0	0,1,0,0	,0,0],						
	[0, 0, 1, 0]	1.0.0.0	,0,0],						
	[0, 1, 0, 0]	0,0,0,0	,0,1],						
	[0,0,0,0	0,0,1,1	,1,0],						
	[0,0,0,0	0,0,0,1	,1,1],						
	[0,0,0,0	0,0,0,0	,1,1]						
])									
u, s	s, vt = 1	np.lina	lg.svd(term_do	c_coun	ts, ful	l_matri	ices=Tru	ue)
	1		1 -0						
# 10	iking on	ly the	$\kappa = 2 \mod 1$	t <i>impor</i>	rtant j	eatures	0.0	I	
up,	sp, vup	- u[.,	0.2],	пр. атар	5(5[0.2]), VU[0.2,		
# Es	stimate	the neu	term-d	locument	. matri	x			
lsa									
	_term_do	c = up	@ sp @	vtp					
	_term_do	c = up	@ sp @	vtp					
	_term_do	c = up	© sp ©	vtp					
	c1	c = up	© sp © c3	vtp c4	c5	m1	m2	m3	m4
human	_term_doo	c = up c2 0.4	© sp © c3 0.38	vtp c4 0.47	c5 0.18	m1 -0.05	m2 -0.12	m3 -0.16	m4
human interface	_term_doo c1 0.16 0.14	c = up c2 0.4 0.37	© sp © c3 0.38 0.33	vtp c4 0.47 0.4	c5 0.18 0.16	m1 -0.05 -0.03	m2 -0.12 -0.07	m3 -0.16 -0.1	m4 -0.09 -0.04
human interface computer	c1 0.16 0.14 0.15	c = up c^2 0.4 0.37 0.51	© sp © c3 0.38 0.33 0.36	vtp c4 0.47 0.4 0.41	c5 0.18 0.16 0.24	m1 -0.05 -0.03 0.02	m2 -0.12 -0.07 0.06	m3 -0.16 -0.1 0.09	m4 -0.09 -0.04 0.12
human interface computer user	c1 0.16 0.14 0.15 0.26	c = up c2 0.4 0.37 0.51 0.84	© sp © c3 0.38 0.33 0.36 0.61	vtp c4 0.47 0.4 0.41 0.7	$\begin{array}{c} c5\\ 0.18\\ 0.16\\ 0.24\\ 0.39 \end{array}$	m1 -0.05 -0.03 0.02 0.03	m2 -0.12 -0.07 0.06 0.08	m3 -0.16 -0.1 0.09 0.12	m4 -0.09 -0.04 0.12 0.19
human interface computer user system	c1 0.16 0.14 0.15 0.26 0.45	c = up $c2$ 0.4 0.37 0.51 0.84 1.23	© sp © c3 0.38 0.33 0.36 0.61 1.05	vtp c4 0.47 0.4 0.41 0.7 1.27	c5 0.18 0.16 0.24 0.39 0.56	m1 -0.05 -0.03 0.02 0.03 -0.07	m2 -0.12 -0.07 0.06 0.08 -0.15	m3 -0.16 -0.1 0.09 0.12 -0.21	m4 -0.09 -0.04 0.12 0.19 -0.05
human interface computer user system response	c1 0.16 0.14 0.15 0.26 0.45 0.16	c = up $c2$ 0.4 0.37 0.51 0.84 1.23 0.58	© sp © c3 0.38 0.33 0.36 0.61 1.05 0.38	vtp c4 0.47 0.4 0.41 0.7 1.27 0.42	c5 0.18 0.16 0.24 0.39 0.56 0.28	m1 -0.05 -0.03 0.02 0.03 -0.07 0.06	m2 -0.12 -0.07 0.06 0.08 -0.15 0.13	m3 -0.16 -0.1 0.09 0.12 -0.21 0.19	m4 -0.09 -0.04 0.12 0.19 -0.05 0.22
human interface computer user system response time	c1 0.16 0.14 0.15 0.26 0.45 0.16 0.16	c = up $c2$ 0.4 0.37 0.51 0.84 1.23 0.58 0.58 0.58	© sp © c3 0.38 0.33 0.36 0.61 1.05 0.38 0.38	vtp c4 0.47 0.4 0.41 0.7 1.27 0.42 0.42 0.42	c5 0.18 0.16 0.24 0.39 0.56 0.28 0.28 0.28	m1 -0.05 -0.03 0.02 0.03 -0.07 0.06 0.06	m2 -0.12 -0.07 0.06 0.08 -0.15 0.13 0.13	m3 -0.16 -0.1 0.09 0.12 -0.21 0.19 0.19	m4 -0.09 -0.04 0.12 0.19 -0.05 0.22 0.22
human interface computer user system response time EPS	c1 0.16 0.14 0.15 0.26 0.45 0.16 0.16 0.22	c = up $c2$ 0.4 0.37 0.51 0.84 1.23 0.58 0.58 0.55 0.55	© sp © c3 0.38 0.33 0.36 0.61 1.05 0.38 0.38 0.38 0.51	vtp c4 0.47 0.4 0.41 0.7 1.27 0.42 0.42 0.63 0.63	c5 0.18 0.16 0.24 0.39 0.56 0.28 0.28 0.24	m1 -0.05 -0.03 0.02 0.03 -0.07 0.06 0.06 -0.07	m2 -0.12 -0.07 0.06 0.08 -0.15 0.13 0.13 -0.14	m3 -0.16 -0.1 0.09 0.12 -0.21 0.19 0.19 -0.2	m4 -0.09 -0.04 0.12 0.19 -0.05 0.22 0.22 -0.11
human interface computer user system response time EPS survey	c1 0.16 0.14 0.15 0.26 0.45 0.16 0.22 0.1	c = up $c2$ 0.4 0.37 0.51 0.84 1.23 0.58 0.58 0.55 0.53 0.53	© sp © c3 0.38 0.33 0.36 0.61 1.05 0.38 0.38 0.38 0.51 0.23	vtp c4 0.47 0.4 0.41 0.7 1.27 0.42 0.42 0.42 0.63 0.21 0.11	c5 0.18 0.16 0.24 0.39 0.56 0.28 0.28 0.28 0.24 0.27	m1 -0.05 -0.03 0.02 0.03 -0.07 0.06 0.06 -0.07 0.14	m2 -0.12 -0.07 0.06 0.08 -0.15 0.13 0.13 -0.14 0.31	m3 -0.16 -0.1 0.09 0.12 -0.21 0.19 0.19 -0.2 0.44	m4 -0.09 -0.04 0.12 0.19 -0.05 0.22 0.22 -0.11 0.42
human interface computer user system response time EPS survey trees	c1 0.16 0.14 0.15 0.26 0.45 0.16 0.22 0.1 -0.06	$\begin{array}{c} c = up \\ c2 \\ 0.4 \\ 0.37 \\ 0.51 \\ 0.84 \\ 1.23 \\ 0.58 \\ 0.58 \\ 0.55 \\ 0.53 \\ 0.23 \\ \end{array}$	© sp © c3 0.38 0.33 0.36 0.61 1.05 0.38 0.38 0.38 0.51 0.23 -0.14	vtp c4 0.47 0.4 0.41 0.7 1.27 0.42 0.42 0.42 0.63 0.21 -0.27	$\begin{array}{c} c5\\ 0.18\\ 0.16\\ 0.24\\ 0.39\\ 0.56\\ 0.28\\ 0.28\\ 0.24\\ 0.27\\ 0.14\\ \end{array}$	m1 -0.05 -0.03 0.02 0.03 -0.07 0.06 0.06 -0.07 0.14 0.24	m2 -0.12 -0.07 0.06 0.08 -0.15 0.13 0.13 -0.14 0.31 0.55	m3 -0.16 -0.1 0.09 0.12 -0.21 0.19 0.19 -0.2 0.44 0.77	m4 -0.09 -0.04 0.12 0.19 -0.05 0.22 0.22 -0.11 0.42 0.66
human interface computer user system response time EPS survey trees graph	c1 c1 0.16 0.14 0.15 0.26 0.45 0.16 0.22 0.1 -0.06 -0.06	$\begin{array}{c c} c = up \\ \hline \\ c2 \\ 0.4 \\ 0.37 \\ 0.51 \\ 0.84 \\ 1.23 \\ 0.58 \\ 0.58 \\ 0.55 \\ 0.53 \\ 0.23 \\ 0.34 \\ \end{array}$	© sp © c3 0.38 0.33 0.36 0.61 1.05 0.38 0.38 0.38 0.51 0.23 -0.14 -0.15	vtp c4 0.47 0.4 0.41 0.7 1.27 0.42 0.42 0.42 0.63 0.21 -0.27 -0.3	$\begin{array}{c} c5\\ 0.18\\ 0.16\\ 0.24\\ 0.39\\ 0.56\\ 0.28\\ 0.28\\ 0.24\\ 0.27\\ 0.14\\ 0.2\end{array}$	m1 -0.05 -0.03 0.02 0.03 -0.07 0.06 0.06 -0.07 0.14 0.24 0.31	m2 -0.12 -0.07 0.06 0.08 -0.15 0.13 0.13 -0.14 0.31 0.55 0.69	m3 -0.16 -0.1 0.09 0.12 -0.21 0.19 0.19 -0.2 0.44 0.77 0.98	m4 -0.09 -0.04 0.12 0.19 -0.05 0.22 0.22 -0.11 0.42 0.66 0.85
human interface computer user system response time EPS survey trees graph minors	c1 c1 0.16 0.14 0.15 0.26 0.45 0.16 0.22 0.1 -0.06 -0.06 -0.04	$\begin{array}{c} c = up \\ c \\ 0.4 \\ 0.37 \\ 0.51 \\ 0.84 \\ 1.23 \\ 0.58 \\ 0.58 \\ 0.58 \\ 0.55 \\ 0.53 \\ 0.23 \\ 0.23 \\ 0.34 \\ 0.25 \end{array}$	© sp © c3 0.38 0.33 0.36 0.61 1.05 0.38 0.38 0.38 0.38 0.51 0.23 -0.14 -0.15 -0.1	vtp c4 0.47 0.4 0.41 0.7 1.27 0.42 0.42 0.42 0.63 0.21 -0.27 -0.3 -0.21	$\begin{array}{c} c5\\ 0.18\\ 0.16\\ 0.24\\ 0.39\\ 0.56\\ 0.28\\ 0.28\\ 0.24\\ 0.27\\ 0.14\\ 0.2\\ 0.15\\ \end{array}$	m1 -0.05 -0.03 0.02 0.03 -0.07 0.06 0.06 -0.07 0.14 0.24 0.31 0.22	$\begin{array}{c} m2 \\ -0.12 \\ -0.07 \\ 0.06 \\ 0.08 \\ -0.15 \\ 0.13 \\ 0.13 \\ -0.14 \\ 0.31 \\ 0.55 \\ 0.69 \\ 0.5 \end{array}$	$\begin{array}{c c} m3 \\ -0.16 \\ -0.1 \\ 0.09 \\ 0.12 \\ -0.21 \\ 0.19 \\ 0.19 \\ -0.2 \\ 0.44 \\ 0.77 \\ 0.98 \\ 0.71 \end{array}$	m4 -0.09 -0.04 0.12 0.19 -0.05 0.22 0.22 -0.11 0.42 0.66 0.85 0.62
human interface computer user system response time EPS survey trees graph minors	c1 0.16 0.14 0.15 0.26 0.45 0.16 0.22 0.1 -0.06 -0.06 -0.04	$\begin{array}{c} c = up \\ c \\ 0.4 \\ 0.37 \\ 0.51 \\ 0.84 \\ 1.23 \\ 0.58 \\ 0.58 \\ 0.55 \\ 0.53 \\ 0.23 \\ 0.23 \\ 0.34 \\ 0.25 \end{array}$	© sp © c3 0.38 0.33 0.36 0.61 1.05 0.38 0.38 0.38 0.51 0.23 -0.14 -0.15 -0.1	vtp c4 0.47 0.4 0.41 0.7 1.27 0.42 0.42 0.42 0.63 0.21 -0.27 -0.3 -0.21	$\begin{array}{c} c5\\ 0.18\\ 0.16\\ 0.24\\ 0.39\\ 0.56\\ 0.28\\ 0.28\\ 0.24\\ 0.27\\ 0.14\\ 0.2\\ 0.15\\ \end{array}$	m1 -0.05 -0.03 0.02 0.03 -0.07 0.06 0.06 -0.07 0.14 0.24 0.31 0.22	$\begin{array}{c} m2 \\ -0.12 \\ -0.07 \\ 0.06 \\ 0.08 \\ -0.15 \\ 0.13 \\ 0.13 \\ -0.14 \\ 0.31 \\ 0.55 \\ 0.69 \\ 0.5 \end{array}$	$\begin{array}{c c} m3 \\ -0.16 \\ -0.1 \\ 0.09 \\ 0.12 \\ -0.21 \\ 0.19 \\ -0.2 \\ 0.44 \\ 0.77 \\ 0.98 \\ 0.71 \\ \end{array}$	m4 -0.09 -0.04 0.12 0.19 -0.05 0.22 0.22 -0.11 0.42 0.66 0.85 0.62
human interface computer user system response time EPS survey trees graph minors	c1 0.16 0.14 0.15 0.26 0.45 0.16 0.22 0.1 -0.06 -0.06 -0.04	$\begin{array}{c} c = up \\ c \\ 0.4 \\ 0.37 \\ 0.51 \\ 0.84 \\ 1.23 \\ 0.58 \\ 0.58 \\ 0.55 \\ 0.53 \\ 0.23 \\ 0.34 \\ 0.25 \end{array}$	© sp © c3 0.38 0.33 0.36 0.61 1.05 0.38 0.38 0.51 0.23 -0.14 -0.15 -0.1	vtp c4 0.47 0.4 0.41 0.7 1.27 0.42 0.42 0.42 0.63 0.21 -0.27 -0.3 -0.21	c5 0.18 0.16 0.24 0.39 0.56 0.28 0.24 0.27 0.14 0.2 0.15	m1 -0.05 -0.03 0.02 0.03 -0.07 0.06 0.06 -0.07 0.14 0.24 0.31 0.22	$\begin{array}{c} m2 \\ -0.12 \\ -0.07 \\ 0.06 \\ 0.08 \\ -0.15 \\ 0.13 \\ 0.13 \\ -0.14 \\ 0.31 \\ 0.55 \\ 0.69 \\ 0.5 \end{array}$	$\begin{array}{c c} m3 \\ -0.16 \\ -0.1 \\ 0.09 \\ 0.12 \\ -0.21 \\ 0.19 \\ -0.2 \\ 0.44 \\ 0.77 \\ 0.98 \\ 0.71 \\ \end{array}$	m4 -0.09 -0.04 0.12 0.19 -0.05 0.22 0.22 -0.11 0.42 0.66 0.85 0.62
human interface computer user system response time EPS survey trees graph minors	c1 0.16 0.14 0.15 0.26 0.45 0.16 0.22 0.1 -0.06 -0.06 -0.04	c = up $c2$ 0.4 0.37 0.51 0.84 1.23 0.58 0.58 0.53 0.23 0.23 0.34 0.25	© sp © c3 0.38 0.33 0.36 0.61 1.05 0.38 0.38 0.38 0.51 0.23 -0.14 -0.15 -0.1	vtp c4 0.47 0.4 0.41 0.7 1.27 0.42 0.42 0.42 0.42 0.63 0.21 -0.27 -0.3 -0.21	c5 0.18 0.16 0.24 0.39 0.56 0.28 0.24 0.27 0.14 0.2 0.15	m1 -0.05 -0.03 0.02 0.03 -0.07 0.06 0.06 -0.07 0.14 0.24 0.31 0.22	$\begin{array}{c} m2 \\ -0.12 \\ -0.07 \\ 0.06 \\ 0.08 \\ -0.15 \\ 0.13 \\ 0.13 \\ -0.14 \\ 0.31 \\ 0.55 \\ 0.69 \\ 0.5 \end{array}$	$\begin{array}{c c} m3 \\ -0.16 \\ -0.1 \\ 0.09 \\ 0.12 \\ -0.21 \\ 0.19 \\ 0.19 \\ -0.2 \\ 0.44 \\ 0.77 \\ 0.98 \\ 0.71 \end{array}$	m4 -0.09 -0.04 0.12 0.19 -0.05 0.22 0.22 -0.11 0.42 0.66 0.85 0.62

https://colab.research.google.com/drive/1qqBkvhaQjkBI70H9W2b8cU4glSjXZdZb?usp=sharing

- captures linguistic distribution of each word in form of a high-dimensional numeric vector
- typically based on co-occurrence counts (count models)
- based on distributional hypothesis: similar distribution ~ similar meaning (similar distribution = similar representation)

Distributed Representation

- sub-symbolic, compact representation of words as dense numeric vectors
- meaning is captured in different dimensions and it is used to predict words (predict models)
- similarity of vectors corresponds to similarity of the words
- word embeddings

	_	C	BO	W																		
	•	A	s CI	١W	e	N	e	use	2	4	((n	-ex	+	W	m	١٢	(2	! k)ef	ζ Υ	2
		2	ο. Ο.	Ête	\mathcal{M}									- J								J
		-																				
		SI	ens	rev	1 <i>l</i> e	•																
				We		la	f (PO	ln (al	les	ł	Ne	٢Ų		m	M	in	9			
								•)				0			
•		le	t	+	aņ	ge:	ł	z	PO	In	cal	Le-	2									
						J			١													
•	· (D	nt	ex	+	M	S	ds	;	C	We	, - ,	e	24	, 6	2V (ry) ,	M	5	nir	10
		-												•								
	•	Po	LSS	l	al	h.	١	V V	rd		٥٢		ve	Ct (r	t	ð	N	N	<u>(</u> .	thi	1
		Se	qv	ev	vhi	all	y	R	nd	a 1	vg.		La	5 (Dh	e - 1	101	1	nc	odi	nç	2
		••	- -		t					• 1	•			b -								
		¥\	U \	۲ı	NY		bŊ	V	NR	191	<u>\t</u>	M	Na	T	IX	4	0	hi	00	lev	$\frac{1}{1}$	
		10	ly	er.	Ť	lna	7 ~	M	nŀ	ħp	y		a 0 , 1	ja	In .		y Y	l	NC	ſŊ	nt	
		Ŵ	\Å	tri	χ	2	4	0	g	e 4	. •	Q	ut	pu	+	1a	ye	~				
		امر	•••		. 1		<u> </u>	•				۰ L'		-	0_		- 11	le			<u>ل</u>	
		E	lev	ne	nt n	-V . La	V 1 S	e	81	1 W	nm	UT.	N (/ Y	1 '	tox		911	ሢ	: (. e v	17 <i>e</i>	X
		V		a	U	ATY	<u> </u>	Τ.														
•	· (ام		ام) }	a <i>(</i>)		•	ti	vn-	ri <i>n</i>	M									
	*	1	141		>v1		N U	*		61]	vu	110	• •									
	•	M	(^ \	まる	עוום	۱in	Λ			(+		ا <i>و</i> ک	pr.	fr	2	2)	()	111	na v	Λ	
		(i	Ĺ				0	n ré	J	01	ne -	-h	0+			um	ns	\sum				
		、 、	•	VN	VI	~	Ŭ	~ 1 (-	- •	. ~		~ 1			~ '''		1				

Word 2 Vec Short comings

- 1. Slow to train, large no. of weights 2. Need lots of data

Improvements

- 1. Word pairs and phrases 2. Subsample frequent words 3. selective updates (negative inputs)

4. Glove

Combines - global natrix factorization (LSA) - local context window (skip-gram)

Count based or Global Matrix Factorization Methods	Prediction based or Local Context window based Methods
Advantages:	 Generates improved performance on tasks like
1. Fast Training	POS tags or NER. Can capture complex patterns beyond word
2. Efficiently leverage statistical information.	similarity.
 Disadv: 1. Primarily captures word similarity. 2. Relatively perform poorly on the word analogy tasks, 3. Disproportionate importance given to large counts. 	Disadv: 1. poorly utilize the statistics of the corpus since they train on separate local context windows instead of on global co-occurrence counts. 2. Scales with corpus size 3. Inefficient use of statistics of the dataset.
· learn word vectors	st dot product equals
Log of the probability	y of co-occurrence

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	$1.9 imes 10^{-4}$	6.6×10^{-5}	$3.0 imes 10^{-3}$	$1.7 imes 10^{-5}$
P(k steam)	$2.2 imes 10^{-5}$	7.8×10^{-4}	$2.2 imes 10^{-3}$	$1.8 imes 10^{-5}$
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

Co-occurrence probabilities for target words ice and steam with selected context words from a 6 billion token corpus. Only in the ratio does noise from non-discriminative words like water and fashion cancel out, so that large values (much greater than 1) correlate well with properties specific to ice, and small values (much less than 1) correlate well with properties specific of steam.

